“RIESGO POR INUNDACIÓN EN EL DISTRITO DE UCHIZA – PROVINCIA DE TOCACHE – DEPARTAMENTO DE SAN MARTÍN”

Ejecutor : GUEVARA PANDURO, Wagner Alejandro Tercero.

Asesor : Ing. BETETA ALVARADO, Víctor.

Institución de Ejecución: Municipalidad Distrital de Uchiza (Departamento de Manejo de Riesgos y Defensa Civil).

Colaborador : Ing. DIONISIO MONTALVO, Franklin.

Duración del trabajo : 21/01/14 - 21/04/14.

Tingo María – Perú

2014
ÍNDICE

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Objetivos</td>
<td>2</td>
</tr>
<tr>
<td>II. REVISIÓN DE LITERATURA</td>
<td>3</td>
</tr>
<tr>
<td>2.1. Desastres naturales</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1. Inundación</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Naturaleza del riesgo</td>
<td>4</td>
</tr>
<tr>
<td>2.3. Análisis de Riesgo</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1. Los elementos del análisis del riesgo</td>
<td>7</td>
</tr>
<tr>
<td>2.4. El peligro y/o amenaza</td>
<td>8</td>
</tr>
<tr>
<td>2.4.1. Amenazas naturales</td>
<td>8</td>
</tr>
<tr>
<td>2.4.2. Amenazas socios naturales</td>
<td>9</td>
</tr>
<tr>
<td>2.5. Vulnerabilidad</td>
<td>10</td>
</tr>
<tr>
<td>2.5.1. Vulnerabilidad natural</td>
<td>11</td>
</tr>
<tr>
<td>2.5.2. Vulnerabilidad física</td>
<td>11</td>
</tr>
<tr>
<td>2.5.3. Vulnerabilidad social</td>
<td>12</td>
</tr>
<tr>
<td>2.5.4. Vulnerabilidad política</td>
<td>12</td>
</tr>
<tr>
<td>2.5.5. Vulnerabilidad educativa</td>
<td>13</td>
</tr>
<tr>
<td>2.5.6. Vulnerabilidad económica</td>
<td>13</td>
</tr>
<tr>
<td>2.5.7. Vulnerabilidad institucional</td>
<td>13</td>
</tr>
</tbody>
</table>
2.6. Estimación de riesgo ... 14
 2.6.1. Riesgo aceptable ... 15

2.7. Gestión de riesgos de desastres ... 15
 2.7.1. La gestión de información para la toma de decisiones ... 16

2.8. Sistema de información territorial y planificación 18
 2.8.1. La aplicación de los SIG al análisis de riesgos 18

III. MATERIALES Y MÉTODOS .. 20

3.1. Ubicación ... 20
 3.1.1. Ubicación política ... 20
 3.1.2. Ubicación geográfica ... 20

3.2. Aspectos ambientales .. 22
 3.2.1. Temperatura .. 22
 3.2.2. Precipitación .. 23
 3.2.3. Hidrografía .. 23
 3.2.4. Clima .. 23
 3.2.5. Cobertura Vegetal ... 24

3.3. Materiales y Equipos ... 25
 3.3.1. Materiales ... 25
 3.3.2. Equipos ... 25
 3.3.3. Documentos y cartografía básica 25
 3.3.4. Programas .. 26

3.4. Metodología .. 26
 3.4.1. Trabajo pre-campo ... 27
 3.4.2. Trabajo de campo ... 27
3.4.3. Trabajo de gabinete .. 28

IV. RESULTADOS .. 48
 4.1. Zonificación territorial de la peligrosidad por inundación 48
 4.2. Nivel de vulnerabilidad de los principales elementos expuestos. 54
 4.3. Riesgo por inundación en el distrito de Uchiza 58
 4.4. Medidas de mitigación ante el riesgo de inundación 64

V. DISCUSIÓN .. 68

VI. CONCLUSIONES ... 71

VII. RECOMENDACIONES ... 73

VIII. REFERENCIAS BIBLIOGRÁFICAS .. 74

IX. ANEXOS O APÉNDICES ... 76
 Anexo A. Centros Poblados considerados en el estudio 76
 Anexo B. Mapas ... 787
 Anexo C. Galería de fotos ... 84
 Anexo D. Modelamiento ... 91
 Anexo E. Matriz de evaluación de la vulnerabilidad 92
ÍNDICE DE CUADROS

1. Clasificación climática según Thornthwaite del distrito de Uchiza 24
2. Matriz de valoración de atributos. ... 31
3. Criterios de valoración de la variable de cobertura vegetación. 33
4. Criterios de valoración de la variable pendiente ... 34
5. Descripción de variables y valores asignados a las unidades 35
6. Criterios de valoración de la variable geomorfología. 36
7. Criterios de valoración de la variable precipitación. 37
8. Ponderación de las variables. .. 38
9. Matriz de los factores de vulnerabilidad e indicadores a evaluar 42
10. Valoración del nivel de vulnerabilidad .. 44
11. Matriz de riesgo .. 47
12. Áreas y niveles del peligro por inundación en el distrito de Uchiza 48
13. Centros poblados ubicados en los niveles de peligrosidad 51
14. Centros poblados ubicados en los niveles de peligrosidad 53
15. Niveles de la vulnerabilidad de los centros poblados de Uchiza 54
16. Niveles de la vulnerabilidad de los centros poblados 57
17. Áreas y niveles de riesgo por inundación en el distrito de Uchiza 59
18. Centros poblados ubicados en los diferentes niveles de riesgo 62
19. Número de centros poblados ubicados en los niveles de riesgo 63
20. Coordenadas de los Centros Poblados ... 76
21. Matriz de evaluación de la vulnerabilidad en el distrito de Uchiza 92
ÍNDICE DE FIGURAS

1. El concepto de riesgo... 5
2. Flujograma del concepto del AdR. .. 6
3. Elementos que componen el riesgo.. 7
4. Mapa de ubicación del distrito de Uchiza... 21
5. Flujo de proceso SIG del submodelo de peligrosidad de inundación 29
6. Estructura conceptual del submodelo de peligro por inundación 30
7. Esquema conceptual del submodelo de vulnerabilidad integral................. 40
8. Unidad de análisis de vulnerabilidad para el distrito de Uchiza............... 45
9. Flujograma para la elaboración del mapa de riesgo............................... 46
10. Mapa de peligro por inundación del distrito de Uchiza......................... 49
11. Niveles del peligrosidad de inundación por área................................ 50
12. Niveles del peligrosidad de inundación por centro poblado.................. 53
13. Mapa de vulnerabilidad global del distrito de Uchiza........................... 56
14. Nivel o grado de vulnerabilidad de los centros poblados....................... 58
15. Mapa de riesgo por inundación del distrito de Uchiza.......................... 60
16. Niveles del riesgo de inundación por área....................................... 61
17. Niveles del riesgo de inundación por centros poblados......................... 64
18. Implementar la silvopastura para fortalecer la cobertura del suelo.......... 65
19. Fortalecimiento de las ribereñas de los ríos (Tramo Pampayacu)............ 66
20. Mapa de cobertura vegetal del distrito de Uchiza............................... 78
21. Mapa de pendiente del distrito de Uchiza.. 79
22. Mapa geológico del distrito de Uchiza.. 80
23. Mapa geomorfológico del distrito de Uchiza.. 81
24. Mapa de precipitación del distrito de Uchiza.. 82
25. Principales ríos del distrito de Uchiza... 83
26. Georreferenciación de viviendas aledañas al cauce de los ríos...................... 84
27. Infraestructura de defensa ribereña en el río Chontayacu............................. 84
28. Actividad fluvial en el río Huallaga... 85
29. Visitas a los canales de riego abastecidos por los diferentes ríos............... 85
30. Viviendas afectadas por las inundaciones fluviales....................................... 86
31. Suelos frágiles a erosiones y deslizamiento.. 86
32. Actividad extractiva de hormigón en el río Chontayacu............................... 87
33. Vista panorámica del río Chontayacu.. 87
34. Vivienda expuesta a inundaciones anuales.. 88
35. Materiales presentes en el cauce del río Chontayacu..................................... 88
36. Encausamiento del río Pampayacu.. 89
37. Colapso de la defensa ribereña a la margen izquierda del río....................... 89
38. Participación de Comisión Ambiental Municipal (CAM – MDU).................... 90
39. Firma del acta de sustentación en la MDU... 90
40. Modelamiento de la peligrosidad por inundación... 91
41. Modelamiento de la vulnerabilidad en el distrito de Uchiza.......................... 91
42. Modelamiento del riesgo de inundación en el distrito de Uchiza.................... 92
I. INTRODUCCIÓN

La ocurrencia de fenómenos naturales como las inundaciones, son parte del ciclo geológico y meteorológico de la naturaleza; sin embargo, las intervenciones humanas en los ecosistemas naturales han provocado desórdenes a escala global que han incrementado nuestra vulnerabilidad a los desastres. Siendo incorporados en los procesos de Ordenamiento Territorial, planes de desarrollo y de planificación nacional, regional y sectorial como parte de la gestión de riesgo para la reducción de los mismos.

En este sentido, la Municipalidad Distrital de Uchiza con la finalidad de contribuir a la reducción de desastres a través de la planificación territorial, prioriza la elaboración de mapas de riesgo por inundación; a través del Departamento de Manejo de Riesgos y Defensa Civil incorporando una metodología donde evalúa las condiciones del territorio (unidades geológicas, geomorfológicas, precipitación, cobertura vegetal y pendiente), asimismo los elementos expuestos (grupos etarios, cobertura de agua, desagüe, luz, infraestructura de vivienda, salud, educación, etc.), a través de métodos estadísticos e información cartográfica para la estimación de riesgo del territorio.
El presente expediente técnico de riesgo por inundación será una herramienta preventiva para la adecuada gestión de riesgo y ejecutar medidas de adaptación destinadas a reducir la vulnerabilidad en el distrito de Uchiza.

1.1. Objetivos

1.1.1. Objetivo general

Evaluar el riesgo por inundación mediante técnicas de modelamiento espacial en el distrito de Uchiza – Provincia de Tocache – Departamento de San Martin.

1.1.2. Objetivos específicos

- Identificar las zonas donde se manifiesta el peligro por inundación en el distrito de Uchiza.
- Evaluar el nivel de vulnerabilidad de los principales elementos expuestos, en el aspecto sociodemográfico, económico y físico-estructural en el distrito de Uchiza.
- Estimar el riesgo por inundación del distrito de Uchiza.
- Proponer medidas de mitigación ante el riesgo de inundación para el distrito de Uchiza
II. REVISIÓN DE LITERATURA

2.1. Desastres naturales

Los desastres son situaciones o procesos sociales que se desencadenan como resultado de la ocurrencia de un fenómeno de origen natural, de fallas tecnológicas en sistemas industriales o bélicos o provocados por el hombre que, al encontrar condiciones propicias de vulnerabilidad en una comunidad, causa pérdidas humanas y materiales, efectos sobre la estructura socioeconómica de una región o un país y daños severos al medio ambiente; lo implica la necesidad de asistencia inmediata de las autoridades y de la población para atender los afectados y restablecer la normalidad (JIMENES et al., 2004). También se puede decir que los desastres naturales es una interrupción severa del funcionamiento de una comunidad causada por un peligro, de origen natural o inducido por la actividad del hombre, ocasionando pérdidas de vidas humanas, considerables pérdidas de bienes materiales, daños a los medios de producción, al ambiente y a los bienes culturales. La comunidad afectada no puede dar una respuesta adecuada con sus propios medios a los efectos del desastre, siendo necesaria la ayuda externa ya sea a nivel nacional y/o internacional. (INDECI, 2006).
2.1.1. Inundación

La Directiva 2007/60/EC de la Unión Europea define inundación como el cubrimiento temporal por agua de una tierra que normalmente no se encuentra cubierta. Por lo tanto, se incluyen las inundaciones producidas por ríos, torrentes, corrientes de agua efímeras mediterráneas e inundaciones marítimas en zonas costeras. European Parliament. Directive (2007), citado por ESCUDER et al. (2010).

2.2. Naturaleza del riesgo

KOHLER et al (2004); menciona que los riesgos han acompañado la vida cotidiana del hombre desde siempre. Una vida sin riesgos no existe y nunca existirá. Pero el nivel de tolerancia y la percepción de los riesgos varían en cada persona. Esta percepción no sólo varía de persona en persona sino también de región en región, de sociedad en sociedad y de cultura en cultura. Por consiguiente, no existe una definición universal de riesgo; precisamente, porque cada persona, cada cultura lo percibe de manera diferente. En el contexto de la gestión de riesgo de desastres naturales, lo definen: “el riesgo es la probabilidad de ocurrencia de un evento extremo causante de daños con una determinada magnitud en un determinado lugar y en un determinado momento”.
En la Figura 1, se muestra la definición del concepto de riesgo donde los lugares/las poblaciones en el sector amarillo se caracterizan por tener determinados tipos de vulnerabilidades, mientras los que están en el área roja, se encuentran amenazados por fenómenos naturales. Sin embargo, sólo están en riesgo los que se encuentran en la zona anaranjada, puesto que allí es donde la amenaza coincide con la vulnerabilidad.

Figura 1. El concepto de riesgo.

Siendo el riesgo algo que todavía no ha ocurrido, algo que se proyecta hacia el futuro. Si un riesgo es considerado o percibido como demasiado alto, existen dos posibilidades: eliminar el riesgo o reducirlo lo más que se pueda. No obstante, la creciente pobreza muchas veces – y cada vez más – crea situaciones en las que una población afectada se expone a un riesgo muy alto, asentándose en zonas de aglomeración, en pendientes muy inclinadas o en áreas de inundación. Por consiguiente, la puesta a disposición
de información relevante sobre una amenaza ayuda a concientizar a las personas y a mejorar la percepción del riesgo. (KOHLER et al., 2004).

2.3. Análisis de Riesgo

Actualmente, los análisis de riesgo no se limitan solamente a la naturaleza como causante de desastres naturales sino que también estudian el rol de las sociedades, de sus formas de producción y de vida, de sus modelos de desarrollo para, así, integrar los resultados de estos estudios y análisis a las correspondientes estrategias de protección. De esta manera, se concibe al Análisis de riesgo (AdR) como un instrumento fundamental de la Gestión de riesgo (GdR) y del manejo de desastres; como se muestra en la Figura 2; que sirve de base para implementar las medidas para la reducción de los riesgos y de los efectos de un posible desastre. (KOHLER et al., 2004).

Figura 2. Flujograma del concepto del AdR.
2.3.1. Los elementos del análisis del riesgo

KOHLER et al. (2004); menciona que son dos los elementos – la amenaza y la vulnerabilidad (Figura 3) – fundamentales para el análisis de riesgo; la amenaza como la probabilidad de ocurrencia de un fenómeno natural peligroso y la vulnerabilidad como la propensión a sufrir daños en el momento de producirse el evento y como la capacidad de protegerse correspondientemente. El producto de estos dos elementos es el riesgo, que expresa la probabilidad de ocurrencia y la magnitud de los posibles daños o pérdidas.

![Diagrama de los elementos del riesgo](attachment:diagram_risk_elements.png)

Figura 3. Elementos que componen el riesgo.

2.4. El peligro y/o amenaza

JIMENES et al. (2004); defina el peligro como la probabilidad de ocurrencia de un fenómeno natural o inducido por la actividad del hombre, potencialmente dañino, de una magnitud dada, en una zona o localidad conocida, que puede afectar un área poblada, infraestructura física y/o el medio ambiente. El peligro, según su origen, puede ser de dos clases: por un lado, de carácter natural; y, por otro de carácter tecnológico o generado por la acción del hombre.

Cuando el peligro es muy alto, nos encontramos ante un peligro que puede ser catalogado como “peligro inminente”, es decir a la situación creada por un fenómeno de origen natural u ocasionado por la acción del hombre, que haya generado, en un lugar determinado, un nivel de deterioro acumulativo debido a su desarrollo y evolución, o cuya potencial ocurrencia es altamente probable en el corto plazo, desencadenando un impacto de consecuencias significativas en la población y su entorno socio - económico (INDECI, 2006).

2.4.1. Amenazas naturales

LAVELL (1996, 1993); menciona que la ubicación originaria de un número importante de centros poblados a escala mundial se explica por su proximidad a diversos recursos naturales, aun cuando, con cambios en las
estructuras, lógicas económicas y en las tecnologías de comunicación y transporte, estos factores hayan perdido peso con el paso del tiempo. La proximidad a mares, océanos, lagos y ríos o a depósitos de minerales; y la ubicación en valles intermontaños tectónicos o en las faldas de volcanes, entre otras, se explica por el acceso a recursos que facilitan el transporte de bienes, la producción pesquera, agrícola o industrial y la interrelación comercial y poblacional en general. Sin embargo, por el mismo proceso de la naturaleza, los recursos que ofrecen oportunidades para la vida humana se convierten en distintos momentos en amenazas para ella misma y sus creaciones. Los ríos que ofrecen oportunidades de producción, acceso a agua y medios de transporte y aspectos estéticos de gran valor, además de la una fertilización natural de sus zonas de inundación, cíclicamente producen inundaciones de magnitudes anormales que ponen en peligro a la comunidad establecida en sus proximidades.

2.4.2. Amenazas socios naturales

Los procesos y eventos naturales establecen límites o fronteras “naturales” al desarrollo de la sociedad y de las ciudades. Son inmutables, en gran medida, a pesar de que la tecnología permite, en determinadas circunstancias, una modificación de su comportamiento e impacto en la sociedad, como es el caso con la construcción de presas, diques, paredes de retención etc. Sin embargo, existe una serie creciente de eventos físicos que afectan a las ciudades, que aparentan ser naturales, pero en su esencia son
creados por la intervención humana. Estos eventos se gestan en la intersección de la sociedad con los procesos de la naturaleza, y pueden convenientemente denominarse eventos o, en su caso, amenazas socios naturales. Aquí se trata, en particular, de los casos de inundaciones, deslizamientos, hundimientos y de sequías que afectan a muchas ciudades. Por lo que la construcción de una ciudad implica automáticamente un cambio en los sistemas ecológicos y ambientales originarios. El ambiente natural se transforma en un ambiente construido, o social. La conversión de suelos naturales en tierras urbanas significa la remoción de la cobertura vegetal natural y su sustitución con asfalto, cemento u otros materiales industriales. Esto inevitablemente cambia la dinámica de las descargas pluviales y la dinámica fluvial de los ríos “urbanos”, con graves consecuencias en términos de inundaciones, si el proceso natural de control pluvial y fluvial no es compensado por la construcción de adecuados sistemas de drenaje urbanos. (LAVELL, 1996 y 1993).

2.5. Vulnerabilidad

Debido a la creciente importancia de los desastres, ha adquirido relevancia y actualidad el término vulnerabilidad. Desde el punto de vista general, puede definirse como la probabilidad de que una comunidad, expuesta a una amenaza natural, según el grado de fragilidad de sus elementos (infraestructura, vivienda, actividades productivas, grado de organización, sistemas de alerta, desarrollo político-institucional y otros), pueda sufrir daños humanos y materiales. (SUBDERE, 2011).
JESUS y CACERES (2013); define que la vulnerabilidad es la susceptibilidad física, social, económica y ambiental que un sistema o un sujeto sean afectados por el fenómeno que caracteriza a la amenaza. Los factores que originan la vulnerabilidad son los siguientes:

- Exposición
- Fragilidad social, y
- Capacidad de respuesta de la población.

2.5.1. Vulnerabilidad natural

Es la vulnerabilidad intrínseca a la que está expuesto todo ser vivo, determinada por los límites ambientales dentro de los cuales es posible la vida y por las exigencias internas de su propio organismo. (WILCHES-CHAUX, 1989).

2.5.2. Vulnerabilidad física

Está referido directamente a la ubicación de asentamientos humanos en zonas de riesgo, y las deficiencias de sus infraestructuras para absorber los efectos de dichos riesgos. Está relacionada con la calidad o tipo de material utilizado y el tipo de construcción de las viviendas, establecimientos económicos (comerciales e industriales) y de servicios (salud, educación, sede de instituciones públicas), e infraestructura socioeconómica (central
hidroeléctrica, carretera, puente y canales de riego), para asimilar los efectos del peligro. (WILCHES-CHAUX, 1989).

2.5.3. Vulnerabilidad social

Se refiere al nivel de cohesión interna que posee una comunidad. Cuanto mejor y mayor se desarrollen las interrelaciones dentro de una comunidad, es decir sus miembros entre sí y a su vez con el conjunto social, menor será la vulnerabilidad presente en la misma. La diversificación y fortalecimiento de organizaciones de manera cuantitativa y cualitativa encargadas de representar los intereses del colectivo, pueden considerarse como un buen indicador de vulnerabilidad social, así como mitigadores de la misma. (WILCHES-CHAUX, 1989).

2.5.4. Vulnerabilidad política

Constituye el valor recíproco del nivel de autonomía que posee una comunidad para la toma de decisiones que le afectan, es decir mientras mayor sea la autonomía, mayor será la vulnerabilidad política de la comunidad. (WILCHES-CHAUX, 1989).
2.5.5. Vulnerabilidad educativa

Está representada principalmente con la preparación académica en distintos niveles, que permite a los ciudadanos aplicar tales conocimientos en su vida cotidiana como herramienta válida para enfrentar las situaciones de peligro presentes en la zona que habitan. (WILCHES-CHAUX, 1989).

2.5.6. Vulnerabilidad económica

Viene dada directamente por los indicadores de desarrollo económico presentes en una población, pudiéndose incluso afirmar que cuanto más deprimido es un sector, mayor es la vulnerabilidad a la que se encuentra ante los desastres, es importante acotar que el inicio de los desastres viene dado directamente por la presencia de un evento natural, pero es la vulnerabilidad humana, la degradación ambiental, el crecimiento demográfico y la falta de preparación y educación ante los mismos, los factores que dominan los procesos de desastres, llegándolos a convertir en catastróficos. (WILCHES-CHAUX, 1989).

2.5.7. Vulnerabilidad institucional

Viene representada por la presencia o ausencia de organizaciones o comités encargados de velar por el adecuado manejo y coordinación de las situaciones de emergencias presentes, como consecuencias de un evento o
desastre, esto se traduce en la capacidad de respuesta ante tales situaciones de emergencia. (WILCHES-CHAUx, 1989).

2.6. **Estimación de riesgo**

La estimación del riesgo en Defensa Civil, es el conjunto de acciones y procedimientos que se realizan en un determinado centro poblado o área geográfica, a fin de levantar información sobre la identificación de los peligros naturales y/o tecnológicos y el análisis de las condiciones de vulnerabilidad, para determinar o calcular el riesgo esperado (probabilidades de daños: pérdidas de vida e infraestructura). Se estima el riesgo antes de que ocurra el desastre. En este caso se plantea un peligro hipotético basado principalmente, en su periodo de recurrencia. En tal sentido, sólo se puede hablar de riesgo (R) cuando el correspondiente escenario se ha evaluado en función del peligro (P) y la vulnerabilidad (V), que puede expresarse en forma probabilística, a través de la fórmula siguiente (INDECI, 2006):

\[R = P \times V \]

El riesgo también se puede ver como el número esperado de pérdidas humanas, heridos daños a la propiedad, al ambiente, interrupción de las actividades económicas, impacto social debidos a la ocurrencia de un fenómeno natural o provocado por el hombre, es decir el producto de la amenaza por la vulnerabilidad, por lo que el modelo conceptual del riesgo se puede expresar de la siguiente forma: Riesgo = Amenaza * Vulnerabilidad (WILCHES-CHAUx, 1989).
2.6.1. Riesgo aceptable

Cardona (1993), citado por LAVELL (1996); define el "riesgo aceptable" como "el valor de probabilidad de consecuencias sociales, económicas o ambientales que, a juicio de la autoridad que regula este tipo de decisiones, es considerado lo suficientemente bajo para permitir su uso en la planificación, la formulación de requerimientos de calidad de los elementos expuestos o para fijar políticas sociales, económicas y ambientales afines"

2.7. Gestión de riesgos de desastres

JIMENES et al. (2004); menciona que la gestión de riesgo es el conjunto de conocimientos, medidas, acciones y procedimientos que, conjuntamente con el uso racional de recursos humanos y materiales, se orientan hacia la planificación de programas y actividades para evitar o reducir los efectos de los desastres. La gestión de desastres, sinónimo de la prevención y atención de desastres, proporciona además todos los pasos necesarios que permitan a la población afectada recuperar su nivel de funcionamiento, después de un impacto. Se puede resumir y señalar, al mismo tiempo, que una planificación estratégica de la prevención y atención de desastres tiene dos objetivos generales: por un lado, minimizar los desastres, y por otro recuperar las condiciones de normalidad o condiciones pre desastre; los mismos que se lograrán mediante el planeamiento, organización, dirección y control de las actividades y acciones relacionadas con las fases siguientes:
- **Mitigación**: Conjunto de acciones cuyo objeto es impedir o evitar que sucesos naturales o generados por la actividad humana causen desastre. Esta reducción se hace cuando no es posible eliminarlos.

- **Preparación**: Medidas y acciones que reducen al mínimo la pérdida de vidas humanas y otros daños, organizando oportunamente y eficazmente las acciones de respuesta.

- **Respuesta**: Conduce operaciones de emergencia para salvar las vidas y propiedades, atendiendo oportunamente a la población.

- **Recuperación**: La recuperación es el esfuerzo de restaurar la infraestructura, la vida social y económica de una comunidad a la normalidad, reconstruye las comunidades a corto, mediano y largo plazo.

2.7.1. La gestión de información para la toma de decisiones

La toma efectiva de decisiones y la implementación de acciones depende en gran medida de la disponibilidad de información adecuada sobre las circunstancias de la situación y las alternativas posibles de acción. En el caso, por ejemplo, de una planificación territorial que tenga en cuenta factores de riesgo, las decisiones deben apoyarse por un lado sobre información del territorio y las amenazas y la vulnerabilidad asociadas, y por otro sobre las restricciones físicas, normativas y prácticas (tiempo, recursos) que determinan las acciones posibles. (BAYARRI, 2009).
A) Gestión prospectiva

CANO (2006), menciona que es el proceso a través del cual se adoptan con anticipación medidas o acciones en la planificación del desarrollo, que promueven la no generación de nuevas vulnerabilidades o peligros.

La gestión prospectiva se desarrolla en función del riesgo “aún no existente”, que podría crearse en la ejecución de futuras iniciativas de inversión y desarrollo. Se concreta a través de regulaciones, inversiones públicas o privadas, planes de desarrollo o planes de ordenamiento territorial.

- Identificar los peligros evaluarlos y monitorearlos
- Análisis de las vulnerabilidades para identificar las condiciones de vulnerabilidad frente a cada peligro identificado
- Determinar las zonas de riesgo de desastre
- Definir medidas preventivas

B) Gestión correctiva

CANO (2006), menciona que es el proceso a través del cual se adoptan con anticipación medidas o acciones en la planificación del desarrollo, que promueven la reducción de la vulnerabilidad existente.

Son acciones de reducción de riesgos: la reubicación de comunidades en riesgo, la reconstrucción o adaptación de edificaciones vulnerables, la recuperación de cuencas degradadas, la construcción de diques, la limpieza de canales y alcantarillas, la canalización de ríos, el dragado
continuo de ríos y reservorios y otras, así como acciones de capacitación, participación y concertación.

2.8. Sistema de información territorial y planificación

Mediante el uso de herramientas especializadas (SIG, modelo de análisis espacial) estos sistemas aplican el conocimiento disponible sobre el territorio y sus escenarios de riesgo para la producción de planes y proyectos que prevengan y mitiguen el riesgo de la población y los bienes, mediante una ordenación territorial y desarrollo adecuados, o lleven a cabo la recuperación de zonas afectadas. (BAYARRI, 2009).

2.8.1. La aplicación de los SIG al análisis de riesgos

Antes de la disponibilidad amplia de tecnología informática en los años 80, Guevara (1995), citado por MASKREY (1998), menciona que los análisis de riesgos fueron realizados utilizando técnicas analógicas, como la superposición manual de mapas temáticos. Esa técnica había sido utilizada durante muchos años para producir mapas de las amenazas ambientales; por ejemplo, para identificar polígonos donde existan terrenos aptos para la construcción, en zonas que no sufran de inundaciones. La misma técnica fue utilizada en 1982 para producir el Plan de Protección Sísmica de Lima Metropolitana (MASKREY, 1998), mediante la superposición de capas cartográficas sobre la vulnerabilidad física de las construcciones (altura de las
construcciones, materiales de construcción, estado de conservación, etc.) con información sobre la vulnerabilidad social y económica. Es poco sorprendente, entonces, la introducción de sistemas digitales de información, como los SIG, para el análisis de riesgos.

Un SIG puede capturar datos geográficos en diferentes formatos; por ejemplo, mapas analógicos digitalizados, imágenes de satélite y datos alfanuméricos georreferenciados, y puede también almacenar grandes volúmenes de datos en un formato digital en diferentes estructuras de bases de datos. Los SIG permiten la integración de números ilimitados de capas temáticas, utilizando diferentes algoritmos para llevar a cabo operaciones espaciales. También permiten la representación gráfica de la información geográfica en muchos formatos diferentes, incluyendo pero no limitándose a mapas temáticos. En términos institucionales, los SIG permiten centralizar e integrar información normalmente dispersa en diferentes formatos, en diferentes organizaciones, para producir "nueva" información de acuerdo a las necesidades de diferentes aplicaciones y usuarios. En contraste a las técnicas analógicas, los SIG ofrecen sistemas dinámicos de información, en los cuales los datos pueden ser actualizados periódicamente o continuamente. (MASKREY, 1998).
III. MATERIALES Y MÉTODOS

3.1. Ubicación

3.1.1. Ubicación política

La ciudad de Uchiza es la capital del distrito de Uchiza, que se encuentra ubicado en:

- Distrito: Uchiza
- Provincia: Tocache
- Departamento: San Martín
- País: Perú

3.1.2. Ubicación geográfica

El distrito de Uchiza, se localiza en la parte sur de la provincia de Tocache; tiene una extensión territorial de 115 677,09 ha; con una latitud de 08°25', longitud 76°25' y una altitud de 544 m.s.n.m. (Figura 4).

Sus límites son por el norte con el distrito de Tocache, por el este con el distrito de Nuevo Progreso, por el oeste con los distritos de Tocache y Shunte, y por el sur con el distrito de Cholón (Dpto. Huánuco).
Figura 4. Mapa de ubicación del distrito de Uchiza.
Por su parte la ciudad de Uchiza se localiza hacia el sur oeste del distrito de Uchiza a la margen izquierda del río Chontayacu, cuyo ámbito territorial urbano ocupado es de 4,08 km2 aproximadamente. (PDC, 2012).

3.2. Aspectos ambientales

El clima en la zona donde se encuentra el distrito de Uchiza, por su ubicación geográfica en la región selva alta o Rupa Rupa, es variado y tropical, cálido y húmedo, caluroso desde mayo hasta el mes de agosto, lluvioso de enero a marzo. Se distinguen dos períodos se llama invierno cuando llueve y enfría el ambiente, verano cuando no llueve y hace calor. (PDC, 2012).

3.2.1. Temperatura

La temperatura media anual es de 28 ºC, con leves descensos en los meses de junio, julio y agosto. La oscilación media generalmente es de 5 ºC, con respecto a la media anual, no observándose riesgos de helada o disminuciones bruscas de temperatura que pueden hacer peligrar los cultivos, aun cuando es frecuente que en los meses de junio y julio se presentan “olas de frío” que marcan un constante con la temperatura normalmente alta, por lo que se hace más agradable el clima en estas épocas. (PDC, 2012).
3.2.2. Precipitación

En la ciudad de Uchiza la precipitación de 1 600 – 2 000 mm anual. Las lluvias se presentan a lo largo del año, con un periodo de máxima precipitación entre los meses de octubre a marzo, y un periodo menor de precipitación entre los meses de junio a agosto. (PDC, 2012).

3.2.3. Hidrografía

La ciudad de Uchiza está comprendida por la cuenca del río Chontayacu. El río Chontayacu es un afluente de la margen izquierda del río Huallaga. Nace en la Cordillera Oriental y tiene un recorrido SO - NE. Su longitud desde sus nacientes a su desembocadura es de 86 km, Su cauce está compuesto de material predominantemente pedregoso. En julio de 2005, a la altura del puente San Francisco, se registró un ancho de 58 m con profundidad media de 0,74 m y profundidad máxima de 1,85 m. Su velocidad de corriente promedio fue de 0,57 m/s y máxima de 0,61 m/s, teniendo un caudal de 26 m³/s. (ZEE, 2006).

3.2.4. Clima

Según la clasificación climática de Thornthwaite el distrito de Uchiza cuenta con una clasificación de húmedo, muy húmedo y súper húmedo como se menciona en el Cuadro 1.
Cuadro 1. Clasificación climática según Thornthwaite del distrito de Uchiza.

<table>
<thead>
<tr>
<th>Humedad</th>
<th>Unidades térmicas</th>
<th>Subtipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Húmedo</td>
<td>Cálido</td>
<td>Con baja concentración térmica durante el verano</td>
</tr>
<tr>
<td>Muy húmedo</td>
<td>Semicálido</td>
<td>Estimándose que en todos los meses se presentan excedentes de humedad</td>
</tr>
<tr>
<td>Muy húmedo</td>
<td>Templado cálido</td>
<td>Estimándose que en todos los meses se presentan excedentes de humedad</td>
</tr>
<tr>
<td>Muy húmedo</td>
<td>Templado frío</td>
<td>Estimándose que en todos los meses se presentan excedentes de humedad</td>
</tr>
<tr>
<td>Súper húmedo</td>
<td>Semicálido</td>
<td>Estimándose que en todos los meses se presentan excedentes de humedad</td>
</tr>
</tbody>
</table>

En el distrito domina el clima húmedo que abarca el sector aluvial del río Huallaga y el clima muy húmedo y semicálido que se distribuye tanto en el norte como en el sur del distrito. Los climas muy húmedos (templado cálido y templado frío) y superhúmedo se desplazan hacia los sectores de montaña, especialmente en el sector occidental del distrito.

3.2.5. Cobertura Vegetal

Las formaciones vegetales diferenciadas para el territorio del distrito de Uchiza según la ZZE (2006) de la provincia de Tocache; tenemos:

- Comunidades altoandinas mixtas de herbáceos con matorrales densos y árboles dispersos.
- Bosques altoandinas de montañas altas con árboles medianos.
- Bosque subandinos de montañas altas empinadas con árboles grandes y vigorosos.
- Bosques subandinos de montañas altas intercolinosas con árboles grandes y vigorosos.
- Bosques mixtos de renacales del Alto Huallaga.
- Bosque intervenido – deforestación.

3.3. Materiales y Equipo

3.3.1. Materiales

- Cuaderno de apuntes
- Lapicero
- Machete

3.3.2. Equipos

- GPS Garmin ßtrex 30
- Cámara digital
- Computadora.

3.3.3. Documentos y cartografía básica

- Zonificación económica y ecológica de la provincia de Tocache (ZZE), 2 006:
- Mapa de cobertura
- Mapa de geología
- Mapa de geomorfología
- Mapa de pendiente
- Mapa de precipitación (Isoyetas).

- Plan de desarrollo urbano del distrito de Uchiza, 2010.
- Diagnóstico socio económico de centros poblados del distrito de Uchiza 2011 y 2012.

3.3.4. Programas

- Excel 2010
- Auto CAD Land 2011
- Google Earth
- Arcgis 10.1

3.4. Metodología

La ejecución del presente expediente técnico, se realizó en el distrito de Uchiza del departamento de San Martin; para el trabajo se planteó tres fases para su realización: trabajo de pre-campo, trabajo de campo y trabajo final de gabinete.
3.4.1. Trabajo pre-campo

Se realizó una recopilación y revisión de la información cartográfica y temática oficial: teniendo como base la zonificación ecológica y económica de la provincia de Tocache; y, los informe presentados por el departamento de manejo de riesgos y Defensa Civil en los años anteriores al estudio sobre los sucesos de inundaciones.

3.4.2. Trabajo de campo

3.4.2.1. Reconocimiento del área de estudio

Se realizó visitas a las comunidades ubicadas a orillas de los ríos en el cercado de Uchiza para reconocer las zonas inundables en los meses de invierno; el cual permitió evaluar la situación actual. También se realizó entrevistas a las autoridades sobre sucesos de desbordamiento de los principales ríos. Por otra parte se realizó la georreferenciación de las áreas expuestas a inundaciones. Contrastando los informes presentados por el área Defensa Civil - MDU, y lo manifestado por los pobladores y autoridades. Como también un diagnostico descriptivo del equipamiento urbano de algunos centros poblados del distrito describiendo las infraestructuras que presenta: salud, educación, viviendas; presencia de autoridades y apoyo socioeconómico.
3.4.3. Trabajo de gabinete

3.4.3.1. Elaboración del submodelo de peligro por inundación

- Estructura conceptual del submodelo

Se elaboró el submodelo de peligro por inundación basado en la integración de una técnica SIG (Sistema de información geográfica - Figura 5), incorporando las siguientes variables temáticas: geomorfología, hidrología, clima (precipitación), geología, cobertura vegetal y pendiente (Figura 6).

- Criterios de valoración de atributos

Como criterio técnico para la valoración de atributos de cada variable, se consideró el análisis de las características físicas de estas, puesto que definen la ocurrencia y el nivel de los peligros; en función a ello, se les asignó valores numéricos tomando como referente la matriz de valoración (Cuadro 2).
Figura 5. Flujo de proceso SIG del submodelo de peligrosidad de inundación del territorio.

Fuente: Elaboración propia con modificación de la guía técnica de modelamiento SIG para la zonificación ecológica económica - MINAN.
La valoración de los atributos de las variables biofísicas se realizó tomando como referencia la matriz de valoración de atributos; consistió en asignar valores numéricos a cada uno de ellos, en función al grado de importancia que reflejan sobre la manifestación de los peligros; permitiendo jerarquizar espacialmente los niveles muy alto, alto, medio y bajo respecto al peligro potencial.
Cuadro 2. Matriz de valoración de atributos.

<table>
<thead>
<tr>
<th>Grado de peligro</th>
<th>Valor de peligro</th>
<th>Mapas temáticos a ponderar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cv</td>
</tr>
<tr>
<td>Muy alto</td>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>Alto</td>
<td></td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medio</td>
<td></td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajo</td>
<td></td>
<td>1,4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, con modificación de la memoria descriptiva ZZE de Lambayeque.
- Análisis univariable

Consiste en el análisis de las variables de forma individual (por mapas), determinando la contribución relativa de los factores que intervienen en el proceso de inestabilidad y susceptibilidad del territorio. Se clasifica al territorio en áreas de diferentes grados de peligrosidad, para tener como el mapa de las unidades territoriales integradas.

a) Cobertura vegetal

Considerado como la cobertura vegetal de un determinado territorio, tiene importancia en la estabilidad del territorio, por ser entre otros aspectos, protector primario de casi todos los ecosistemas, por su capacidad de asimilación de energía solar, por ser protector de los suelos y de los recursos hídricos. Se incluyen los matorrales, los cultivos agrícolas, los pastizales y los bosques. (Ver el mapa de cobertura vegetal del distrito de Uchiza Figura 20 Anexo B).

Desde el punto de vista del estudio, tiene importancia por cuanto del tipo y densidad de cobertura vegetal (Cuadro 3), dependen que los suelos que se encuentran sobre todo en pendientes pronunciadas; así un suelo con escasa vegetación brinda una escasa protección a las laderas, acelera el desplazamiento y/o la velocidad del agua de escorrentía superficial producto de las fuertes precipitaciones pluviales, propiciando inundaciones y lavado de los suelos; en cambio, la abundante vegetación, tiene mayor capacidad de
proteger a los suelos, dándoles mayor estabilidad y manteniendo la forma del relieve.

Cuadro 3. Criterios de valoración de la variable de cobertura vegetación.

<table>
<thead>
<tr>
<th>Cobertura vegetal</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuerpos de agua</td>
<td>3,0</td>
</tr>
<tr>
<td>Bosques mixtos de renacales del alto Huallaga</td>
<td>2,0</td>
</tr>
<tr>
<td>Bosque intervenido - deforestación</td>
<td>1,6</td>
</tr>
<tr>
<td>Bosques altoandinos de montañas altas con árboles medianos</td>
<td>1,6</td>
</tr>
<tr>
<td>Bosques subandinos de montañas altas intercolinosas con árboles grandes y vigorosos</td>
<td>1,4</td>
</tr>
<tr>
<td>Bosques subandinos de montañas altas empinadas con árboles grandes y vigorosos</td>
<td>1,4</td>
</tr>
<tr>
<td>Comunidades altoandinas mixtas de herbáceos con matorrales densos y árboles dispersos</td>
<td>1,3</td>
</tr>
</tbody>
</table>

b) Pendiente

Para estos efectos la pendiente presenta un carácter determinante de acuerdo al grado de inclinación en relación con el grado de resistencia de los suelos. (Ver el mapa de pendiente del distrito de Uchiza Figura 21 Anexo B). En consideración a estos criterios, los atributos de esta variable fueron valorados, asignándoles valores en función al grado de influencia que estos tienen frente a la ocurrencia de un desbordamiento de los ríos. La valoración se detalla en el Cuadro 4:
Cuadro 4. Criterios de valoración de la variable pendiente.

<table>
<thead>
<tr>
<th>Pendiente</th>
<th>Descripción</th>
<th>Porcentaje (%)</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuerpos de agua</td>
<td>-</td>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td>Plana</td>
<td>0 - 2</td>
<td></td>
<td>2,8</td>
</tr>
<tr>
<td>Ligeramente inclinada</td>
<td>2 - 4</td>
<td></td>
<td>2,4</td>
</tr>
<tr>
<td>Moderadamente Inclinada</td>
<td>4 - 8</td>
<td></td>
<td>2,2</td>
</tr>
<tr>
<td>Fuertemente Inclinada</td>
<td>8 - 15</td>
<td></td>
<td>1,6</td>
</tr>
<tr>
<td>Moderadamente empinada</td>
<td>15 - 25</td>
<td></td>
<td>1,6</td>
</tr>
<tr>
<td>Empinada</td>
<td>25 - 50</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Muy empinada</td>
<td>50 - 75</td>
<td></td>
<td>1,0</td>
</tr>
</tbody>
</table>

c) Geología

Se analizó desde sus características litológicas, con la finalidad de entender como es el relieve, como es su comportamiento y cuál es el grado de resistencia física de la roca ante agentes erosivos, tectónicos y en general ante procesos de desestabilización (Ver el mapa geológico del distrito de Uchiza Figura 22 Anexo B), asimismo, se analizó el factor estructural de estabilidad, el cual se calificó de acuerdo a las características físicas y químicas de la roca (Cuadro 5).
Cuadro 5. Descripción de variables y valores asignados de las unidades estratigráficas.

<table>
<thead>
<tr>
<th>Unidad estratigráfica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuerpos de agua</td>
<td>3,0</td>
</tr>
<tr>
<td>Depósitos fluviales</td>
<td>3,0</td>
</tr>
<tr>
<td>Depósitos aluviales subrecientes</td>
<td>2,6</td>
</tr>
<tr>
<td>Formación Cushabatay</td>
<td>2,4</td>
</tr>
<tr>
<td>Depósitos aluviales pleistocenico</td>
<td>2,4</td>
</tr>
<tr>
<td>Domos</td>
<td>2,1</td>
</tr>
<tr>
<td>Formación Esperanza</td>
<td>2,0</td>
</tr>
<tr>
<td>Formación Yahuarango</td>
<td>2,0</td>
</tr>
<tr>
<td>Formación Chambira</td>
<td>2,0</td>
</tr>
<tr>
<td>Formación Tocache</td>
<td>2,0</td>
</tr>
<tr>
<td>Formación Vivian</td>
<td>1,6</td>
</tr>
<tr>
<td>Formación Chonta</td>
<td>1,6</td>
</tr>
<tr>
<td>Intrusivo San Martín</td>
<td>1,6</td>
</tr>
<tr>
<td>Formación Sarayaquillo</td>
<td>1,4</td>
</tr>
<tr>
<td>Formación agua caliente</td>
<td>1,4</td>
</tr>
<tr>
<td>Formación condorsinga</td>
<td>1,4</td>
</tr>
<tr>
<td>Subvolcánico Uchiza</td>
<td>1,3</td>
</tr>
<tr>
<td>Complejo Marañón</td>
<td>1,3</td>
</tr>
<tr>
<td>Grupo Mitú</td>
<td>1,3</td>
</tr>
</tbody>
</table>

d) Geomorfología

La valoración de atributos de la variable geomorfología, se ha realizado en función a la amplia variedad de caracteres geomorfológicos que presenta el distrito de Uchiza, se ha tomado en cuenta la forma del relieve que
presenta la superficie; pues lugares con geoformas cuya topografía es plana, se encuentra más expuesta a peligros por flujos de aguas, se le asignó un valor muy alto, en cambio geoformas que presentan topografía pronunciada, son menos susceptibles a sufrir modificaciones superficiales por flujos de aguas. (Ver el mapa de geomorfológico del distrito de Uchiza Figura 23 Anexo B).

Teniendo en cuenta este criterio y tomando como referencia la matriz de valoración (Cuadro 2); se asignó valores a los respectivos atributos; el resultado se muestra en el Cuadro 6.

Cuadro 6. Criterios de valoración de la variable de geomorfología.

<table>
<thead>
<tr>
<th>Geomorfología</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planicie aluviofluvial subreciente</td>
<td>3,0</td>
</tr>
<tr>
<td>Cuerpos de Agua</td>
<td>3,0</td>
</tr>
<tr>
<td>Valle de sedimentación fluvioaluvial</td>
<td>2,6</td>
</tr>
<tr>
<td>Domos</td>
<td>2,1</td>
</tr>
<tr>
<td>Piedemonte diluvial</td>
<td>2,0</td>
</tr>
<tr>
<td>Colinas bajas estructurales denudacionales</td>
<td>1,6</td>
</tr>
<tr>
<td>Laderas coluvioaluviales</td>
<td>1,6</td>
</tr>
<tr>
<td>Montañas altas estructurales denudacionales</td>
<td>1,4</td>
</tr>
<tr>
<td>Colinas altas estructurales denudacionales</td>
<td>1,4</td>
</tr>
<tr>
<td>Montañas graníticas - granodioríticas</td>
<td>1,2</td>
</tr>
<tr>
<td>Montañas calcáreas</td>
<td>1,2</td>
</tr>
<tr>
<td>Montañas de esquistos y gneiss</td>
<td>1,2</td>
</tr>
<tr>
<td>Montañas detríticas</td>
<td>1,2</td>
</tr>
</tbody>
</table>

e) Precipitación

Las frecuentes variaciones de precipitación, que obviamente depende de las variaciones de temperatura y altitud, influyen en el drenaje superficial, con precipitaciones muy intensas y prolongadas en escenarios con alta pendiente pueden desencadenar flujos de lodo y huaycos; a su vez genera inestabilidad en masas rocosas y en los depósitos inconsolidados; sus efectos, sobre todo de lluvias intensas y de larga duración que a su vez generan grandes cantidades de agua, modifican de manera constante las formas del relieve, por cuanto incrementa el cauce de los ríos provocando inundaciones, que afectan medios de vida de la población llegando hasta a la pérdida de vidas humanas. (Ver el mapa de precipitación del distrito de Uchiza Figura 24 Anexo B). El siguiente Cuadro 7 se presenta los niveles de rango y valor respectivo:

Cuadro 7. Criterios de valoración de la variable precipitación.

<table>
<thead>
<tr>
<th>Precipitación (mm)</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 4 000</td>
<td>3,0</td>
</tr>
<tr>
<td>3 000 – 4 000</td>
<td>2,4</td>
</tr>
<tr>
<td>2 500 – 3 000</td>
<td>1,8</td>
</tr>
<tr>
<td>< 2500</td>
<td>1,4</td>
</tr>
</tbody>
</table>

- Análisis multivariables

El análisis multivariable determinará en qué grado y con qué peso contribuyen cada una de las variables en el resultado final. Este procedimiento es muy importante, debido a que se determina, la distribución espacial de los niveles de peligrosidad por inundación del territorio.

La ponderación de variables que integran el presente sub modelo, mide la mayor o menor predisposición que un espacio geográfico sea modificado por eventos naturales, se expresa en cuatro niveles (Cuadro 8).

Cuadro 8. Ponderación de las variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ponderación (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geología</td>
<td>20</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>20</td>
</tr>
<tr>
<td>Cobertura vegetal</td>
<td>20</td>
</tr>
<tr>
<td>Pendiente</td>
<td>20</td>
</tr>
<tr>
<td>Precipitación</td>
<td>20</td>
</tr>
</tbody>
</table>

Este análisis considera a la geomorfología y geología como base para este análisis ya que expresa las formas y los procesos dominantes en el territorio, por esta razón se le asigna un 30% de influencia; por otro lado tenemos a la geología, en este aspecto se consideró a la litología que expresa el origen de las formas y la resistencia de las rocas; luego la cobertura vegetal con una influencia del 20% que está referida a la mayor o menor estabilización y protección de los suelos en función a la cobertura; por otro parte la pendiente,
esta variable condiciona la ocurrencia de los peligros naturales, por esta razón se asignó un 10% de influencia; seguido por la precipitación como factor detonante.

- Criterios de ponderación de variables

La ponderación de las variables se llevó a cabo a través del método de aplicación de ponderación de cada variable a través de una ecuación de primer orden de la forma:

$$\text{PESO Var SM}(n) = \text{Peso (Var}(x) \cdot \text{Peso Atrib (x) + Peso (Var}(x-1) \cdot \text{Peso Atrib (x-1)} + \ldots$$

Donde X es el número de variables existentes en el sub modelo, luego de aplicar la ecuación de primer orden se reclasificaron los pesos de acuerdo a la Cuadro 4, determinando los rangos para valorar el peligros por inundaciones (Muy alto, alto, medio, bajo) en torno a las valores determinados.

- Algoritmo de análisis utilizado

Respecto al algoritmo utilizado para la integración de la información del submodelo de peligrosidad de inundación del territorio se empleó la ponderación, en el que a cada una de las variables se le asignan pesos con un tope de 100%, de este se distribuye en cada una de las variables, y tiene la forma siguiente:

$$\text{Peligro de inundación del territorio} = [\text{Geomorfología}] \cdot 0,2 + [\text{Geología}] \cdot 0,2 + [\text{Vegetación}] \cdot 0,2 + [\text{Pendientes}] \cdot 0,2 + [\text{Precipitación}] \cdot 0,2$$
3.4.3.2. Elaboración del submodelo de vulnerabilidad

La elaboración del submodelo de vulnerabilidad se enfocó en la evaluación de tres factores: La fragilidad, la resiliencia y el grado de exposición. Con este enfoque se separaron y analizaron las variables en tres dimensiones (Figura 7):

![Esquema conceptual del submodelo de vulnerabilidad integral de territorio.](image-url)

Figura 7. Esquema conceptual del submodelo de vulnerabilidad integral de territorio.
a) Vulnerabilidad sociodemográfico: agrupa a las variables sociales que tienen un cierto grado de injerencia para evaluar la situación vulnerable de los centros poblados, en esta categoría entra la población, discapacidad, asistencia a un centro educativo y analfabetismo (Cuadro 9).

b) Vulnerabilidad Económica: agrupa a las variables económicas relacionadas a las viviendas, sobre todo de los servicios con que cuentan, en esta categoría se encuentra la PEA, servicios básicos y equipamiento (Cuadro 9).

c) Vulnerabilidad Físico: estructural: agrupa variables relacionados a la infraestructura de las viviendas y equipamiento urbano – rural, estos aspectos están enfocados en la salud, educación, vivienda y vial (Cuadro 9).

- Evaluación de la vulnerabilidad

Se analiza y se evalúa en base a criterios de fragilidad, lugar de exposición y resiliencia. Mediante esta evaluación se determina el grado de fortaleza o debilidad de cada zona y como resultado se obtiene el mapa de vulnerabilidad y sus niveles: Muy alta, alta, media y baja, según sean las características del sector urbano o rural evaluado. (Cuadro 10).
Cuadro 9. Matriz de los factores de vulnerabilidad e indicadores a evaluar.

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>Aspectos a evaluar</th>
<th>N°</th>
<th>Cod</th>
<th>Factores de vulnerabilidad (variables)</th>
<th>Indicador</th>
<th>Criterios de evaluación de la vulnerabilidad</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemográfico</td>
<td>Población</td>
<td>1</td>
<td>VSD1</td>
<td>Grupos etarios</td>
<td>Número de personas por rango de edad</td>
<td>CC.PP. Con la población joven de 0 - 5 y población anciana de 65 a más.</td>
<td>INEI 2007. Diagnósticos de los centros poblados 2010 y 2011.</td>
</tr>
<tr>
<td></td>
<td>Seguro de Salud</td>
<td>2</td>
<td>VSD2</td>
<td>Discapacidad</td>
<td>Número de hogares con algún discapacitado</td>
<td>Mayor % de viviendas con algún discapacitado por CC.PP</td>
<td>INEI 2007.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>VSD3</td>
<td>Asistencia a un CE</td>
<td>Número de pobladores que no asisten a un CE</td>
<td>Mayor % de personas que asisten a un CE</td>
<td>INEI 2007. Diagnósticos de los centros poblados 2010 y 2011.</td>
</tr>
<tr>
<td>Económicos</td>
<td>PEA</td>
<td>5</td>
<td>VE1</td>
<td>PEA</td>
<td>PEA por actividad económica</td>
<td>CC.PP con el mayor % de población dedicada a la agricultura y ganadería; y, construcción</td>
<td>INEI 2007. Diagnósticos de los centros poblados 2010 y 2011.</td>
</tr>
<tr>
<td></td>
<td>Servicios básicos</td>
<td>6</td>
<td>VE2</td>
<td>Cobertura de agua potable</td>
<td>CC.PP con agua potable</td>
<td>CC.PP con el mayor % de viviendas que carecen de agua potable</td>
<td>INEI 2007. Diagnósticos de los centros poblados 2010 y 2011.</td>
</tr>
<tr>
<td>Código</td>
<td>SECCIÓN</td>
<td>DESCRIPCIÓN</td>
<td>CC.PP con el mayor % de viviendas que carecen de servicios higiénicos</td>
<td>INEI 2007. Diagnósticos de los centros poblados 2010 y 2011.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nivel de centros educativos (inicial, primaria, secundaria, superior, etc.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tipo de superficie de vía (asfaltada, afirmado, carrozable y trocha)</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, con modificación de la memoria descriptiva ZZE de Lambayeque.
Para evaluar la vulnerabilidad en función a una unidad espacial se estila utilizar los límites políticos administrativos o los físico naturales tales como las cuencas, sin embargo para la realidad del territorio de Uchiza; se utilizó el método de polígono de thiessen (Figura 8), como forma de ajustar los límites entre centros poblados. Cabe recalcar que para el análisis de vulnerabilidad se utilizaron solo aquellos centros poblados cuya población es superior a 100 habitantes.

- Estimación de los rangos porcentuales de vulnerabilidad

Se trabajó según rangos porcentuales. Es decir se separa el grupo de población vulnerable por cada variable, se calcula su porcentaje en relación a la población total por centro poblado y se obtiene el porcentaje de población vulnerable también por cada centro poblado. Una vez obtenido estos valores por cada variable de un submodelo, se le aplica la fórmula siguiente:

\[
\text{Vulnerabilidad global} = \frac{(V1 + V2 + V3)}{3}
\]

Dónde: \(V = \text{vulnerabilidad} \)
Figura 8. Unidad de análisis de vulnerabilidad para el distrito de Uchiza en base al método de Thiessen.
3.4.3.1. Elaboración del modelo de riesgo

La elaboración del modelo de riesgo consistió en la integración de los submodelos antes elaborados mapa de peligro y el mapa de vulnerabilidad. (Figura 9).

Una vez identificados y analizados los peligros a los que está expuesto el área de estudio, y realizado los respectivos análisis de vulnerabilidad, se procede a la conjunción de éstos para calcular el nivel de riesgo del área en estudio (Cuadro 11).
Cuadro 11. Matriz de riesgo.

<table>
<thead>
<tr>
<th>Peligro Muy Alto</th>
<th>Riesgo Bajo</th>
<th>Riesgo Medio</th>
<th>Riesgo Alto</th>
<th>Riesgo Muy Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peligro Alto</td>
<td>Riesgo Bajo</td>
<td>Riesgo Medio</td>
<td>Riesgo Alto</td>
<td>Riesgo Muy Alto</td>
</tr>
<tr>
<td>Peligro Medio</td>
<td>Riesgo Bajo</td>
<td>Riesgo Medio</td>
<td>Riesgo Medio</td>
<td>Riesgo Alto</td>
</tr>
<tr>
<td>Peligro Bajo</td>
<td>Riesgo Bajo</td>
<td>Riesgo Bajo</td>
<td>Riesgo Bajo</td>
<td>Riesgo Medio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vulnerabilidad</th>
<th>Baja</th>
<th>Media</th>
<th>Alta</th>
<th>Muy Alta</th>
</tr>
</thead>
</table>

3.4.3.2. Propuesta de mitigación

Se propondrá medidas de mitigación en base al mapa de riesgo por inundación para la reducción de los daños causados por una posible inundación en el distrito de Uchiza.
IV. RESULTADOS

4.1. Zonificación territorial de la peligrosidad por inundación en el distrito de Uchiza

En la Figura 10, se muestra el mapa de peligrosidad por inundación del distrito de Uchiza con una área total de 115 671,09 ha; de las cuales 1 640,05 ha presenta una nivel de peligrosidad muy alto representando el 1,42% del territorio (Cuadro 12), asimismo 68 315,72 ha, presenta una peligrosidad baja siendo más del 50% del territorio como se muestra en el Cuadro 12. Por otro parte en la Figura 11 se muestra la peligrosidad de inundación por porcentaje de área del territorio en sus cuatro niveles: Muy alto 1,42%, alto 18,53%, medio 20,99% y bajo 59,06% del territorio respectivamente.

Cuadro 12. Áreas y niveles del peligro por inundación en el distrito de Uchiza.

<table>
<thead>
<tr>
<th>Peligro de inundación</th>
<th>Área (ha)</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Alto</td>
<td>1 640,04</td>
<td>1,42</td>
</tr>
<tr>
<td>Alto</td>
<td>21 439,05</td>
<td>18,53</td>
</tr>
<tr>
<td>Medio</td>
<td>24 282,27</td>
<td>20,99</td>
</tr>
<tr>
<td>Bajo</td>
<td>68 315,72</td>
<td>59,06</td>
</tr>
<tr>
<td>Total</td>
<td>115 677,09</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.
Figura 10. Mapa de peligro por inundación del distrito de Uchiza.
Figura 11. Niveles del peligrosidad de inundación por área.

Las áreas de muy alta peligrosidad; comprende un área total de 1 640,04 ha del territorio donde se encuentra ubicadas dos centros poblados (Cuadro 14): Santa Lucia y Nueva Unión como se muestra en el Cuadro 13.

Las áreas de alta peligrosidad; comprende un área de 21 439,05 ha lo que representa el 18,53% del territorio donde se encuentra ubicadas 13 centros poblados (Cuadro 14). Asimismo en el Cuadro 13 se menciona cada centro poblado ubicadas dentro de estas áreas de alta peligrosidad.

Las áreas de moderada peligrosidad; comprende un área de 24 282,27 ha lo que representa el 20,99% del territorio donde se encuentra ubicadas 19 centros poblados (Cuadro 14), asimismo son mencionadas en el Cuadro 13.
Las áreas de baja peligrosidad; comprende un área de 68 315,72 ha representado el 59,06% del territorio donde se encuentra ubicadas siete centros poblados (Cuadro 14): Barro Blanco, Campo Verde, Jorge Chávez, Pampa Hermosa, Santa Rosa de Manquiute, San Andrés de Tomas y Tingo de Uchiza como se muestra en el Cuadro 13.

Cuadro 13. Centros poblados ubicados en los diferentes niveles de peligrosidad.

<table>
<thead>
<tr>
<th>Código</th>
<th>Centro poblado</th>
<th>Nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>Alto Huaynabe</td>
<td>Alto</td>
</tr>
<tr>
<td>BH</td>
<td>Bajo Huaynabe</td>
<td>Alto</td>
</tr>
<tr>
<td>BP</td>
<td>Bajo Porongo</td>
<td>Medio</td>
</tr>
<tr>
<td>BB</td>
<td>Barro Blanco</td>
<td>Bajo</td>
</tr>
<tr>
<td>BO</td>
<td>Bolayna</td>
<td>Alto</td>
</tr>
<tr>
<td>BAT</td>
<td>Buenos Aires de Tomas</td>
<td>Alto</td>
</tr>
<tr>
<td>CA</td>
<td>Cahuide</td>
<td>Alto</td>
</tr>
<tr>
<td>CJ</td>
<td>Cajatambo</td>
<td>Medio</td>
</tr>
<tr>
<td>CV</td>
<td>Campo Verde</td>
<td>Bajo</td>
</tr>
<tr>
<td>CP</td>
<td>Cruz Pampa</td>
<td>Alto</td>
</tr>
<tr>
<td>EP</td>
<td>El Porvenir Km - 9</td>
<td>Medio</td>
</tr>
<tr>
<td>FM</td>
<td>Fray Martin</td>
<td>Alto</td>
</tr>
<tr>
<td>JC</td>
<td>Jorge Chávez</td>
<td>Bajo</td>
</tr>
<tr>
<td>JCM</td>
<td>José Carlos Mariátegui</td>
<td>Medio</td>
</tr>
<tr>
<td>KUY</td>
<td>Kunyag</td>
<td>Alto</td>
</tr>
<tr>
<td>LV</td>
<td>La Victoria</td>
<td>Medio</td>
</tr>
<tr>
<td>LO</td>
<td>Loboyacu</td>
<td>Medio</td>
</tr>
<tr>
<td>Código</td>
<td>Localidad</td>
<td>Altitud</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>LA</td>
<td>Los Ángeles</td>
<td>Medio</td>
</tr>
<tr>
<td>NA</td>
<td>Nueva Arequipa</td>
<td>Alto</td>
</tr>
<tr>
<td>NL</td>
<td>Nueva Libertad</td>
<td>Medio</td>
</tr>
<tr>
<td>UN</td>
<td>Nueva Unión</td>
<td>Muy alto</td>
</tr>
<tr>
<td>PH</td>
<td>Pampa Hermosa</td>
<td>Bajo</td>
</tr>
<tr>
<td>PA</td>
<td>Pampayacu</td>
<td>Alto</td>
</tr>
<tr>
<td>PU</td>
<td>Pucayacu</td>
<td>Medio</td>
</tr>
<tr>
<td>PH</td>
<td>Puerto Huicte</td>
<td>Medio</td>
</tr>
<tr>
<td>RDC</td>
<td>Ramal de Cachiyacu</td>
<td>Medio</td>
</tr>
<tr>
<td>SF</td>
<td>San Francisco</td>
<td>Medio</td>
</tr>
<tr>
<td>SAT</td>
<td>San Andrés de Tomás</td>
<td>Bajo</td>
</tr>
<tr>
<td>SCT</td>
<td>San Cristóbal de Tomas</td>
<td>Alto</td>
</tr>
<tr>
<td>SJD</td>
<td>San Juan de Dios</td>
<td>Medio</td>
</tr>
<tr>
<td>SJO</td>
<td>San Juan de Ollates</td>
<td>Medio</td>
</tr>
<tr>
<td>SJP</td>
<td>San Juan de Porongo</td>
<td>Alto</td>
</tr>
<tr>
<td>SJ</td>
<td>San Juan Km - 4</td>
<td>Medio</td>
</tr>
<tr>
<td>SL</td>
<td>Santa Lucía</td>
<td>Muy alto</td>
</tr>
<tr>
<td>SRM</td>
<td>Santa Rosa de Manquiute</td>
<td>Bajo</td>
</tr>
<tr>
<td>SRS</td>
<td>Santa Rosa de Shapaja</td>
<td>Medio</td>
</tr>
<tr>
<td>SDE</td>
<td>Santo Domingo del Espino</td>
<td>Medio</td>
</tr>
<tr>
<td>TU</td>
<td>Tingo de Uchiza</td>
<td>Bajo</td>
</tr>
<tr>
<td>TA</td>
<td>Túpac Amaru- Independencia</td>
<td>Alto</td>
</tr>
<tr>
<td>UC</td>
<td>Uchiza</td>
<td>Medio</td>
</tr>
<tr>
<td>UCA</td>
<td>Unión cadena</td>
<td>Medio</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Peligro de inundación</th>
<th>N° Centro poblados</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Alto</td>
<td>2,00</td>
<td>4,88</td>
</tr>
<tr>
<td>Alto</td>
<td>13,00</td>
<td>31,71</td>
</tr>
<tr>
<td>Medio</td>
<td>19,00</td>
<td>46,34</td>
</tr>
<tr>
<td>Bajo</td>
<td>7,00</td>
<td>17,07</td>
</tr>
<tr>
<td>Total</td>
<td>41,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Figura 12. Niveles del peligrosidad de inundación por centro poblado.
4.2. Nivel de vulnerabilidad de los principales elementos expuestos, en el aspecto sociodemográfico, económico y físico-estructural en el distrito de Uchiza.

En la Figura 13 se muestra el mapa de vulnerabilidad global del distrito de Uchiza, comprendida por 41 centros poblados de las cuales dos centros poblados se encuentran en un nivel muy alto representando el 5%. En el Cuadro 15 se muestra los centros poblados en estudio de las cuales Nueva Libertad y Campo Verde representan ese 5% de vulnerabilidad muy alta.

Cuadro 15. Niveles de la vulnerabilidad de los centros poblados de Uchiza.

<table>
<thead>
<tr>
<th>Cod</th>
<th>Centros poblados</th>
<th>Valor</th>
<th>Nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>Alto Huaynabe</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>BH</td>
<td>Bajo Huaynabe</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>BP</td>
<td>Bajo Porongo</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>BB</td>
<td>Barro Blanco</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>BO</td>
<td>Bolaynaya</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>BAT</td>
<td>Buenos Aires de Tomas</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>CA</td>
<td>Cahuide</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>CJ</td>
<td>Cajatambo</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>CV</td>
<td>Campo Verde</td>
<td>4</td>
<td>Muy alto</td>
</tr>
<tr>
<td>CP</td>
<td>Cruz Pampa</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>EP</td>
<td>El Porvenir Km - 9</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>FM</td>
<td>Fray Martin</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>JC</td>
<td>Jorge Chávez</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>JCM</td>
<td>José Carlos Mariátegui</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>KUY</td>
<td>Kunyag</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>Código</td>
<td>Localidad</td>
<td>Altitud</td>
<td>Descripción</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>LV</td>
<td>La Victoria</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>LO</td>
<td>Loboyacu</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>LA</td>
<td>Los Ángeles</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>NA</td>
<td>Nueva Arequipa</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>NL</td>
<td>Nueva Libertad</td>
<td>4</td>
<td>Muy Alto</td>
</tr>
<tr>
<td>UN</td>
<td>Nueva Unión</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>PH</td>
<td>Pampa Hermosa</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>PA</td>
<td>Pampayacu</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>PU</td>
<td>Pucayacu</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>PH</td>
<td>Puerto Huicte</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>RDC</td>
<td>Ramal de Cachiyacu</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>SF</td>
<td>San Francisco</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>SAT</td>
<td>San Andrés de Tomas</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>SCT</td>
<td>San Cristóbal de Tomas</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>SJD</td>
<td>San Juan de Dios</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>SJO</td>
<td>San Juan de Ollates</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>SJP</td>
<td>San Juan de Porongo</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>SJ</td>
<td>San Juan Km - 4</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>SL</td>
<td>Santa Lucia</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>SRM</td>
<td>Santa Rosa de Manquiute</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>SRS</td>
<td>Santa Rosa de Shapaja</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>SDE</td>
<td>Santo Domingo del Espino</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>TU</td>
<td>Tingo de Uchiza</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>TA</td>
<td>Túpac Amaru- Independencia</td>
<td>3</td>
<td>Alto</td>
</tr>
<tr>
<td>UC</td>
<td>Uchiza</td>
<td>2</td>
<td>Medio</td>
</tr>
<tr>
<td>UCA</td>
<td>Unión cadena</td>
<td>3</td>
<td>Alto</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Figura 13. Mapa de vulnerabilidad global del distrito de Uchiza.
Las zonas de vulnerabilidad muy alta; zonas de características frágiles, en donde predominan viviendas con paredes de material precario construidas de adobe, madera y otros. (Anexo E). Representando un 5%.

Las zonas de vulnerabilidad alta, zonas cuyas viviendas no cuentan con los servicios básicos y en las que predominan construcciones de material precario, con una mínima articulación vial (Anexo E) y representa el mayor número de centros poblados (28 centros poblados – Cuadro 16), representando un 68% respectivamente (Figura 13).

Las zonas de vulnerabilidad media: está comprendida por 11 centros poblados (Cuadro 15) representando el 27% (Figura 13); y, están mencionados en el Cuadro 15.

Las zonas de vulnerabilidad baja: en la Figura 13 se observa que no existe centros poblados con vulnerabilidad baja.

Cuadro 16. Niveles de la vulnerabilidad de los centros poblados del distrito de Uchiza.

<table>
<thead>
<tr>
<th>Grado</th>
<th>N° centros Poblados</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Alto</td>
<td>2</td>
<td>5,00</td>
</tr>
<tr>
<td>Alto</td>
<td>28</td>
<td>68,00</td>
</tr>
<tr>
<td>Medio</td>
<td>11</td>
<td>27,00</td>
</tr>
<tr>
<td>Bajo</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.
Figura 14. Nivel o grado de vulnerabilidad de los centros poblados.

4.3. **Riesgo por inundación en el distrito de Uchiza**

En la Figura 15, se muestra el mapa de riesgo por inundación del distrito de Uchiza donde se aprecian las áreas propensas a riesgos de inundaciones fluviales, que se dan en los meses de diciembre – abril. Por lo que el Cuadro 17, muestra el porcentaje de área por riesgo donde el 55% (Figura 16) del territorio presenta un nivel de riesgo bajo lo que viene a ser 63 758,06 ha del territorio, y solamente el 3% del territorio (Figura 16) un riesgo bajo comprendiendo un área de 2 809,92 ha respectivamente.

Asimismo el Cuadro 19 muestra los centros poblados ubicados en los diferentes niveles de riesgo encontrándose los centros poblados de Cruz Pampa, Nueva Unión y Santa Lucía presentan un nivel de riesgo muy alto, comprendiendo un 3% del territorio. Mientas que el nivel de riesgo bajo esta
comprendida por los centros poblados de Barro Blanco, Jorge Chávez, Pampa Hermosa, San Andrés de Tomas, Santa Rosa de Manquiute y Tingo de Uchiza haciendo un porcentaje de 55,00% del territorio.

Cuadro 17. Áreas y niveles de riesgo por inundación en el distrito de Uchiza.

<table>
<thead>
<tr>
<th>Grado</th>
<th>Área (ha)</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Alto</td>
<td>2 809,92</td>
<td>3,00</td>
</tr>
<tr>
<td>Alto</td>
<td>18 989,08</td>
<td>16,00</td>
</tr>
<tr>
<td>Medio</td>
<td>30 120,04</td>
<td>26,00</td>
</tr>
<tr>
<td>Bajo</td>
<td>63 758,06</td>
<td>55,00</td>
</tr>
<tr>
<td>Total</td>
<td>115 677,09</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Zonas de riesgo muy alto, comprende un área total de 2 809,92 ha del territorio donde se encuentra ubicados tres centros poblados (Cuadro 19), entre las que tenemos Cruz Pampa, Nueva Unión y Santa Lucia como se muestra en el Cuadro 17, representando un 3% del área total.

Zonas de riesgo alto, comprende un área total de 18 989,08 ha representado el 16% del territorio donde se encuentra ubicados 10 centros poblados (Cuadro 19); y se encuentran mencionadas en el Cuadro 18, representando un 16% del área total.
Figura 15. Mapa de riesgo por inundación del distrito de Uchiza.
Zonas de riesgo medio, constituye el 26,04% del área del territorio de Uchiza siendo un total de 30 120,04 ha; comprende un número de 22 centros poblados (Cuadro 19) y se encuentran mencionadas en el Cuadro 18.

Zonas de riesgo bajo, presente en su mayoría sobre el territorio siendo un 63 758 ha del área que representa el 55,02% del territorio; comprende solamente seis centros poblados Barro Blanco, Jorge Chávez, Pampa Hermosa, San Andrés de Tomas, Santa Rosa de Manquiute y Tingo de Uchiza (Cuadro 18).
Cuadro 18. Centros poblados ubicados en los diferentes niveles de riesgo.

<table>
<thead>
<tr>
<th>Cód.</th>
<th>Centro poblado</th>
<th>Nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH</td>
<td>Alto Huaynabe</td>
<td>Alto</td>
</tr>
<tr>
<td>BH</td>
<td>Bajo Huaynabe</td>
<td>Alto</td>
</tr>
<tr>
<td>BP</td>
<td>Bajo Porongo</td>
<td>Medio</td>
</tr>
<tr>
<td>BB</td>
<td>Barro Blanco</td>
<td>Bajo</td>
</tr>
<tr>
<td>BO</td>
<td>Bolayna</td>
<td>Alto</td>
</tr>
<tr>
<td>BAT</td>
<td>Buenos Aires de Tomas</td>
<td>Medio</td>
</tr>
<tr>
<td>CA</td>
<td>Cahuide</td>
<td>Medio</td>
</tr>
<tr>
<td>CJ</td>
<td>Cajatambo</td>
<td>Medio</td>
</tr>
<tr>
<td>CV</td>
<td>Campo Verde</td>
<td>Medio</td>
</tr>
<tr>
<td>CP</td>
<td>Cruz Pampa</td>
<td>Muy alto</td>
</tr>
<tr>
<td>EP</td>
<td>El Porvenir Km - 9</td>
<td>Medio</td>
</tr>
<tr>
<td>FM</td>
<td>Fray Martin</td>
<td>Alto</td>
</tr>
<tr>
<td>JC</td>
<td>Jorge Chávez</td>
<td>Bajo</td>
</tr>
<tr>
<td>JCM</td>
<td>José Carlos Mariátegui</td>
<td>Medio</td>
</tr>
<tr>
<td>KUY</td>
<td>Kunyag</td>
<td>Alto</td>
</tr>
<tr>
<td>LV</td>
<td>La Victoria</td>
<td>Medio</td>
</tr>
<tr>
<td>LO</td>
<td>Loboyacu</td>
<td>Medio</td>
</tr>
<tr>
<td>LA</td>
<td>Los Ángeles</td>
<td>Medio</td>
</tr>
<tr>
<td>NA</td>
<td>Nueva Arequipa</td>
<td>Alto</td>
</tr>
<tr>
<td>NL</td>
<td>Nueva Libertad</td>
<td>Alto</td>
</tr>
<tr>
<td>UN</td>
<td>Nueva Unión</td>
<td>Muy alto</td>
</tr>
<tr>
<td>PH</td>
<td>Pampa Hermosa</td>
<td>Bajo</td>
</tr>
<tr>
<td>PA</td>
<td>Pampayacu</td>
<td>Medio</td>
</tr>
<tr>
<td>PU</td>
<td>Pucayacu</td>
<td>Alto</td>
</tr>
<tr>
<td>PH</td>
<td>Puerto Huicte</td>
<td>Medio</td>
</tr>
<tr>
<td>Región</td>
<td>Distrito</td>
<td>Nivel de riesgo</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>RDC</td>
<td>Ramal de Cachiyacu</td>
<td>Medio</td>
</tr>
<tr>
<td>SF</td>
<td>San Francisco</td>
<td>Medio</td>
</tr>
<tr>
<td>SAT</td>
<td>San Andrés de Tomas</td>
<td>Bajo</td>
</tr>
<tr>
<td>SCT</td>
<td>San Cristóbal de Tomas</td>
<td>Alto</td>
</tr>
<tr>
<td>SJD</td>
<td>San Juan de Dios</td>
<td>Medio</td>
</tr>
<tr>
<td>SJO</td>
<td>San Juan de Ollates</td>
<td>Medio</td>
</tr>
<tr>
<td>SJP</td>
<td>San Juan de Porongo</td>
<td>Medio</td>
</tr>
<tr>
<td>SJ</td>
<td>San Juan Km - 4</td>
<td>Medio</td>
</tr>
<tr>
<td>SL</td>
<td>Santa Lucia</td>
<td>Muy alto</td>
</tr>
<tr>
<td>SRM</td>
<td>Santa Rosa de Manquiute</td>
<td>Bajo</td>
</tr>
<tr>
<td>SRS</td>
<td>Santa Rosa de Shapaja</td>
<td>Medio</td>
</tr>
<tr>
<td>SDE</td>
<td>Santo Domingo del Espino</td>
<td>Medio</td>
</tr>
<tr>
<td>TU</td>
<td>Tingo de Uchiza</td>
<td>Bajo</td>
</tr>
<tr>
<td>TA</td>
<td>Túpac Amaru- Independencia</td>
<td>Alto</td>
</tr>
<tr>
<td>UC</td>
<td>Uchiza</td>
<td>Medio</td>
</tr>
<tr>
<td>UCA</td>
<td>Unión cadena</td>
<td>Medio</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Cuadro 19. Número de centros poblados ubicados en los diferentes niveles de riesgo.

<table>
<thead>
<tr>
<th>Riesgo de inundación</th>
<th>Grado</th>
<th>N° centros poblados</th>
<th>Porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Alto</td>
<td>3,00</td>
<td></td>
<td>2,53</td>
</tr>
<tr>
<td>Alto</td>
<td>10,00</td>
<td></td>
<td>24,39</td>
</tr>
<tr>
<td>Medio</td>
<td>22,00</td>
<td></td>
<td>53,66</td>
</tr>
<tr>
<td>Bajo</td>
<td>6,00</td>
<td></td>
<td>55,02</td>
</tr>
<tr>
<td>Total</td>
<td>41,00</td>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
4.4. **Medidas de mitigación ante el riesgo de inundación para el distrito de Uchiza**

Las medidas de mitigación ante el riesgo de inundación en el distrito de Uchiza tenemos:

- **Para la conservación de suelos**
 - Fortalecer el sistema silvopastoril para fortalecer los cerros descubiertos y así mantener la actividad ganadera (Figura 18).
Figura 18. Implementar la silvopastura para fortalecer la cobertura del suelo y evitar la erosión de los mismos.

- Fortalecer los proyectos de reforestación en las cabeceras de los ríos. Asimismo fortalecer las ribereñas de los ríos con especies propias del distrito. (Figura 19).

- **Para el ordenamiento territorial**
 - Implementar normativas y resoluciones de áreas vulnerables a inundaciones para impedir el poblamiento de esas áreas, de acuerdo al presente estudio.
 - Fomentar la incorporación de la prevención de desastres en la planificación del desarrollo.
- Fomentar la participación comunitaria en la prevención de desastres.

Figura 19. Fortalecimiento de las ribereñas de los ríos (Tramo Pampayacu).

- Optimizar la respuesta a las emergencias y desastres.
- Creación de un sistema de administración del desarrollo urbano, con funciones principalmente promotoras del desarrollo, confiable, seguro y eficiente en el control de las obras públicas y privadas.

- **Campañas educativas**

 - Realizar charlas, talleres a las comunidades que presenta riesgos muy alto y alto a inundaciones.
- Realizar simulacros de inundación en las comunidades mencionadas anteriormente con la participación de las Instituciones públicas y privadas del distrito (Ejército peruano, Policía Nacional, Institutos Superiores, MINSA, Asociación de motocarristas, Centros Educativos, entre otros).

- Propiciar una mayor toma de conciencia en los niveles de decisión económico, social y político, sobre la relación costo-beneficio de la gestión de riesgo.

- Capacitación sobre primeros auxilios.

- **Plan de Emergencia**

- Realizar el plan de prevención de desastres del distrito de Uchiza; orientado hacia la reducción de las pérdidas humanas, sociales y económicas; y cómo actuar en caso de una inundación.
La inundación es un peligro potencial que se manifiesta en los periodos de lluvias provocando desastres sobre el ambiente y la comunidad, como se muestra en el Cuadro 12 y Figura 11 el 2% del territorio presenta una peligrosidad muy alta, seguida del 20% del territorio que presenta una peligrosidad alta, con un área de 25 509,70 ha expuesta a un cubrimiento temporal o permanente por agua fluviales que normalmente no se encuentra cubiertas. (ESCUDEY et al., 2010).

Según LAVELL (1996) los que nos ofrecen oportunidades para la vida humana se convierten en distintos momentos en amenazas y/o peligros para ella misma y sus creaciones, como se muestra en el Cuadro 14 y Figura 12 los centros poblados ubicados entre los niveles de peligrosidad muy alto y alto son 2 y 20 respectivamente, haciendo un total 22 centros poblados expuestos a inundaciones lo que representa más del 50%; siendo los ríos los que nos ofrecen oportunidades de producción, acceso a agua y medios de transporte y aspectos estéticos de gran valor, además de la una fertilización natural de sus zonas de inundación, cíclicamente producen inundaciones de magnitudes anormales que ponen en peligro a la comunidad establecida en sus proximidades.
Existen 22 centros poblados con niveles de peligrosidad muy alta y alta como se muestra en el Cuadro 13 lo que serían catalogados como "peligro inminente" (INDECI, 2006); asimismo 25 509,70 ha son zonas potencialmente dañinos, que puede afectar el área poblada, infraestructura física y/o el medio ambiente (JIMENES et al., 2004).

En el Cuadro 15 se muestra los niveles de vulnerabilidad por centro poblado encontrándose que los centros poblados de Nueva Libertad y Campo Verde presentan una vulnerabilidad muy alta, que según KOHLER et al. (2004) vienen a ser comunidades más propensas a sufrir daños en el momento de producirse el evento y con una baja capacidad de protegerse;

En el Cuadro 16 y Figura 14 se muestra que dos centros poblados presentan un nivel de vulnerabilidad muy alta y 28 centros poblados una vulnerabilidad alta representando el 5% y 68% respectivamente; que según WILCHES-CHAUX (1989) viene a ser centros poblados con deficiencias infraestructurales para absorber los efectos de riesgos; mala diversificación y fortalecimiento de organizaciones de manera cuantitativa y cualitativa encargadas de representar los intereses colectivos.

En el Cuadro 20 y Figura 17 se muestra que solamente seis centros poblados presentan una vulnerabilidad baja representando el 55% del territorio (Figura 16) que según CARDONA (1993) son centros poblados con un "riesgo aceptable" con una probabilidad de consecuencias sociales, económicas o ambientales aceptables al juicio de la autoridad, lo que hace que sean áreas suficientemente permitirles para el uso en la planificación.
En el Cuadro 17 y Figura 16 se muestra que el 3% presenta un nivel de riesgo muy alto y 16% un nivel de riesgo alto del territorio respectivamente, mientras en el Cuadro 19 y Figura 17 se muestra que 5 centros poblados presentan un nivel de riesgo muy alto y 14 centros poblados un nivel de riesgo alto ocupando un área total de 21 799 ha del territorio lo que se tendría en cuenta para una planificación territorial, cuyas decisiones deben apoyarse por un lado sobre información del territorio y las amenazas y la vulnerabilidad asociada, y por otro sobre las restricciones físicas. (BAYARRI, 2009).

Las medidas de mitigación propuestas fueron conservación de suelos, campañas educativas, generación de un plan de emergencia para la prevención de desastres que según JIMENES (2004), tienen como finalidad minimizar el suceso de un desastre, y por otro parte proporcionar condiciones ambientales aceptables para las comunidades que se lograrán mediante el planeamiento, organización, dirección y control de las actividades

En las Figuras 10, 13 y 15 se muestran los mapas de peligrosidad, vulnerabilidad y riesgo elaborados mediante técnicas SIG; según BAYARRI (2009); el uso de estas herramientas especializadas (SIG, modelo de análisis espacial) permiten el conocimiento sobre la disponible del territorio y sus escenarios de riesgo para la producción de planes y proyectos que prevengan y mitiguen el riesgo de la población y los bienes, mediante una ordenación territorial y desarrollo adecuados, o lleven a cabo la recuperación de zonas afectadas.
VI. CONCLUSIONES

1. El presente submodelo de peligrosidad de inundación muestra que el 2% de la superficie del territorio de Uchiza, presenta áreas con peligrosidad de nivel muy alto; mientras que el 56% presenta áreas con peligrosidad de nivel bajo siendo la superficie total evaluada 115 677,09 ha.

2. Los centros poblados ubicados en las áreas de peligrosidad muy alta son dos: Nueva Unión y Santa Lucia; asimismo 22 centros poblados ubicados en una peligrosidad alta, 11 centros poblados en peligrosidad media y solamente seis centros poblados en una peligrosidad baja.

3. Dentro del distrito de Uchiza existen zonas en donde no se ha evaluado la vulnerabilidad, debido principalmente a que no hay centros poblados ni actividad antrópica.

4. La vulnerabilidad fue evaluado en 41 centros poblados de las cuales no se encontró centros poblados con una vulnerabilidad baja; pero sin con vulnerabilidades muy alta, siendo los centros poblados de Nueva Libertad y Campo Verde. Por otra parte 28 centros poblados presentan una vulnerabilidad alta representando el 68%. Asimismo la vulnerabilidad media está comprendida por 11 centros poblados.
5. El riesgo por inundación presente en el distrito de Uchiza fue un 3% del área total (2 809,9 ha) un riesgo muy alto comprendiendo cinco centros poblados; por otra parte el riesgo alto presenta una porcentaje de 16% ocupando un área de 18 989,08 ha en las cuales se encuentran ubicadas 14 centros poblados; el nivel de riesgo medio un porcentaje de 26% de la superficie con un área de 30 120,04 ha comprendiendo 16 centros poblados y finalmente el riesgo bajo un 55% con un área de 63 758,06 ha en la cuales están ubicadas seis centros poblados.

6. Las medidas preventivas fueron cuatro orientadas a la conservación de los suelos (reforestación de las cabeceras de los ríos, implementar la silvopastura), ordenamiento territorial; y la realización de campaña educativas como también la elaboración de un plan de prevención de desastres.
VII. RECOMENDACIONES

1. Establecer convenios con instituciones públicas y privadas de manera que se implemente una política de fortalecimiento de capacidades dirigido a planificadores, técnicos encargados de formular proyectos de desarrollo, en donde se tenga en consideración la manifestación de los peligros más recurrentes.

2. Actualizar cada año la elaboración del submodelo de vulnerabilidad y riesgo.

3. Tener en consideración que existen zonas en donde no se ha evaluado la vulnerabilidad, debido principalmente a que no hay centros poblados ni actividad antrópica. Por lo tanto se recomienda tener en cuenta este aspecto esporádico a la hora de plantear cualquier análisis de vulnerabilidad y riesgos a nivel regional y nacional.

4. Tener en consideración los niveles de riesgo por inundación que presenta el territorio para la elaboración de políticas y lineamientos regionales y locales de planificación y de inversión, para mayores beneficios de estos.
VIII. REFERENCIAS BIBLIOGRÁFICAS

Anexo A. Centros Poblados considerados en el estudio.

Cuadro 20. Coordenadas de los Centros Poblados.

<table>
<thead>
<tr>
<th>N°</th>
<th>Centros poblados*</th>
<th>Coordenadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>Alto Huaynabe</td>
<td>359892</td>
</tr>
<tr>
<td>2</td>
<td>Bajo Huaynabe</td>
<td>352681</td>
</tr>
<tr>
<td>3</td>
<td>Bajo Porongo</td>
<td>337325</td>
</tr>
<tr>
<td>4</td>
<td>Barro Blanco</td>
<td>338184</td>
</tr>
<tr>
<td>5</td>
<td>Bolayna</td>
<td>354696</td>
</tr>
<tr>
<td>6</td>
<td>Buenos Aires de Tomas</td>
<td>334336</td>
</tr>
<tr>
<td>7</td>
<td>Cahuide</td>
<td>356960</td>
</tr>
<tr>
<td>8</td>
<td>Cajatambo</td>
<td>334927</td>
</tr>
<tr>
<td>9</td>
<td>Campo Verde</td>
<td>343874</td>
</tr>
<tr>
<td>10</td>
<td>Cruz Pampa</td>
<td>341508</td>
</tr>
<tr>
<td>11</td>
<td>El Porvenir Km - 9</td>
<td>343323</td>
</tr>
<tr>
<td>12</td>
<td>Fray Martin</td>
<td>351672</td>
</tr>
<tr>
<td>13</td>
<td>Jorge Chávez</td>
<td>345921</td>
</tr>
<tr>
<td>14</td>
<td>José Carlos Mariátegui</td>
<td>330946</td>
</tr>
<tr>
<td>15</td>
<td>Kunyag</td>
<td>351670</td>
</tr>
<tr>
<td>16</td>
<td>La victoria</td>
<td>336964</td>
</tr>
<tr>
<td>17</td>
<td>Lobyacu</td>
<td>345374</td>
</tr>
<tr>
<td></td>
<td>Comunidad</td>
<td>Código Postal</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>18</td>
<td>Los Ángeles</td>
<td>343916</td>
</tr>
<tr>
<td>19</td>
<td>Nueva Arequipa</td>
<td>354426</td>
</tr>
<tr>
<td>20</td>
<td>Nueva Libertad</td>
<td>339703</td>
</tr>
<tr>
<td>21</td>
<td>Nueva Unión</td>
<td>348170</td>
</tr>
<tr>
<td>22</td>
<td>Pampa Hermosa</td>
<td>342479</td>
</tr>
<tr>
<td>23</td>
<td>Pampayacu</td>
<td>339149</td>
</tr>
<tr>
<td>24</td>
<td>Pucayacu</td>
<td>338927</td>
</tr>
<tr>
<td>25</td>
<td>Puerto Huicte</td>
<td>348446</td>
</tr>
<tr>
<td>26</td>
<td>Ramal de Cachiyacu</td>
<td>344883</td>
</tr>
<tr>
<td>27</td>
<td>San Francisco</td>
<td>339160</td>
</tr>
<tr>
<td>28</td>
<td>San Andrés de tomas</td>
<td>334601</td>
</tr>
<tr>
<td>29</td>
<td>San Cristóbal de tomas</td>
<td>334798</td>
</tr>
<tr>
<td>30</td>
<td>San Juan de Dios</td>
<td>338989</td>
</tr>
<tr>
<td>31</td>
<td>San Juan de Ollates</td>
<td>342580</td>
</tr>
<tr>
<td>32</td>
<td>San Juan de Porongo</td>
<td>352129</td>
</tr>
<tr>
<td>33</td>
<td>San Juan Km - 4</td>
<td>339969</td>
</tr>
<tr>
<td>34</td>
<td>Santa Lucía</td>
<td>347264</td>
</tr>
<tr>
<td>35</td>
<td>Santa Rosa de Manquiute</td>
<td>337798</td>
</tr>
<tr>
<td>36</td>
<td>Santa Rosa de Shapaja</td>
<td>349899</td>
</tr>
<tr>
<td>37</td>
<td>Santo Domingo del Espino</td>
<td>330639</td>
</tr>
<tr>
<td>38</td>
<td>Tingo de Uchiza</td>
<td>327975</td>
</tr>
<tr>
<td>39</td>
<td>Túpac Amaru- independencia</td>
<td>356550</td>
</tr>
<tr>
<td>40</td>
<td>Uchiza</td>
<td>339064</td>
</tr>
<tr>
<td>41</td>
<td>Unión Cadena</td>
<td>343050</td>
</tr>
</tbody>
</table>

* Cabe mencionar que existen 61 comunidades pero para el estudio se consideró aquellos que tienen una población mayor a 100.
Anexo B. Mapas.

Figura 20. Mapa de cobertura vegetal del distrito de Uchiza.
Figura 21. Mapa de pendiente del distrito de Uchiza.
Figura 22. Mapa geológico del distrito de Uchiza.
Figura 23. Mapa geomorfológico del distrito de Uchiza.
Figura 24. Mapa de precipitación del distrito de Uchiza.
Figura 255. Mapa de los cuerpos de aguas en el distrito de Uchiza.
Anexo C. Galería de fotos.

Figura 266. Georreferenciación de viviendas aledañas al cauce de los ríos.

Figura 277. Infraestructura de defensa ribereña en el río Chontayacu.
Figura 288. Actividad fluvial en el río Huallaga.

Figura 299. Visitas a los canales de riego abastecidos por los diferentes ríos del distrito para el sembrío de arroz.
Figura 30. Viviendas afectadas por las inundaciones fluviales.

Figura 301. Suelos frágiles a erosiones, deslizamiento por la falta de cobertura vegetal.
Figura 312. Actividad extractiva de hormigón en el río Chontayacu.

Figura 323. Vista panorámica del río Chontayacu.
Figura 334. Vivienda expuesta a inundaciones anuales.

Figura 345. Materiales presentes en el cauce del río Chontayacu a la altura del caserío Crizneja.
Figura 356. Encausamiento del río Pampayacu a la altura del centro poblado de Pampayacu.

Figura 367. Colapso de la defensa ribereña a la margen izquierda del río Chontayacu para proteger tramos de la carretera a Puerto Huicte.

Figura 389. Firma del acta de sustentación en la MDU.
Anexo D. Modelamiento.

Figura 40. Modelamiento de la peligrosidad por inundación en el distrito de Uchiza.

Figura 391. Modelamiento de la vulnerabilidad en el distrito de Uchiza.
Figura 402. Modelamiento del riesgo de inundación en el distrito de Uchiza.

Anexo E. Matriz de evaluación de la vulnerabilidad en el distrito de Uchiza.

Cuadro 21. Matriz de evaluación de la vulnerabilidad en el distrito de Uchiza.